The Galois-Theoretic Kodaira-Spencer Morphism of an Elliptic Curve

نویسندگان

  • Shinichi Mochizuki
  • SHINICHI MOCHIZUKI
چکیده

The purpose of this paper is to study in greater detail the arithmetic KodairaSpencer morphism of an elliptic curve introduced in [Mzk1], Chapter IX, in the general context of the Hodge-Arakelov theory of elliptic curves, developed in [Mzk1-3]. In particular, after correcting a minor error (cf. Corollary 1.6) in the construction of this arithmetic Kodaira-Spencer morphism in [Mzk1], Chapter IX, §3, we define (cf. §2.1) a slightly modified “Lagrangian” version of this arithmetic Kodaira-Spencer morphism which has the following remarkable properties:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of the Hodge-Arakelov Theory of Elliptic Curves II

The purpose of the present manuscript is to continue the survey of the Hodge-Arakelov theory of elliptic curves (cf. [7, 8, 9, 10, 11]) that was begun in [12]. This theory is a sort of “Hodge theory of elliptic curves” analogous to the classical complex and p-adic Hodge theories, but which exists in the global arithmetic framework of Arakelov theory. In particular, in the present manuscript, we...

متن کامل

Connections and Related Integral Structures on the Universal Extension of an Elliptic Curve

§0. Introduction §1. The Étale Integral Structure on the Universal Extension §2. The Étale Integral Structure for an Ordinary Elliptic Curve §2.1. Some p-adic Function Theory §2.2. The Verschiebung Morphism §3. Compactified Hodge Torsors §4. The Étale Integral Structure on the Hodge Torsors §4.1. Notation and Set-Up §4.2. Degenerating Elliptic Curves §4.3. Ordinary Elliptic Curves §4.4. The Gen...

متن کامل

Q-curves and Galois representations

Let K be a number field, Galois over Q. A Q-curve over K is an elliptic curve over K which is isogenous to all its Galois conjugates. The current interest in Q-curves, it is fair to say, began with Ribet’s observation [27] that an elliptic curve over Q̄ admitting a dominant morphism from X1(N) must be a Q-curve. It is then natural to conjecture that, in fact, all Q-curves are covered by modular ...

متن کامل

Calabi-yau Manifolds Whose Moduli Spaces Are Locally Symmetric Manifolds and No Quantum Corrections

There is a natural sequence of CY maniflods Mg. Double covers of CP ramified over 2g + 2 hyperplanes. We observe that some of them are obtained from the Jacobian J(Cg) of hyper-elliptic curve Cg by an action of an involution τg on J(Cg) such that J(Cg)/τg is a double cover of CP ramified over 2g + 2 hyperplanes. This construction generalizes Kummer surfaces, which are obtained from the Jacobian...

متن کامل

The Arithmetic and Geometry of Elliptic Surfaces

We survey some aspects of the theory of elliptic surfaces and give some results aimed at determining the Picard number of such a surface. For the surfaces considered, this will be equivalent to determining the Mordell-Weil rank of an elliptic curve defined over a function field in one variable. An interesting conjecture concerning Galois actions on the relative de Rham cohomology of these surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000